skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hong, Shunying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Afterslip could help to reveal seismogenic fault structure. The 2020 Mw 6.3 Nima earthquake happened in a pull-apart basin within the Qiangtang block, central Tibetan plateau. Previous studies have explained the coseismic and early (<6 mo) postseismic deformation by rupture and afterslip on a normal fault bounding the western side of the basin. Here, we resolved the 19-month Interferometric Synthetic Aperture Radar-measured sequences of postseismic displacements that revealed a second postseismic displacement center ~12 km to the east of the main fault. Fitting the postseismic displacement requires afterslip on both the main fault and an antithetic fault that probably forms a y-shaped pair of conjugate faults in a negative flower structure. Stress-driven afterslip models suggest that the required afterslip on the antithetic fault could be triggered by coseismic rupture of the main fault or by a simultaneous rupture on the antithetic fault. The afterslip on both faults occurred mainly up-dip to the coseismic slip and has released moment ~15%–19% of that by the coseismic rupture. These results provide insights into active extension in the central Tibetan plateau and highlight the complex nature of fault rupture and afterslip. 
    more » « less